A note on stopping rules in EM-ML reconstructions of ECT images
نویسنده
چکیده
The use of the expectation-maximization algorithm to obtain pseudo-maximum likelihood estimates (i.e. the EM-ML algorithm) of radiopharmaceutical distributions based on data collected from emission computed tomography (ECT) systems is now a well developed area, as witnessed by a number of recent articles on that topic, including the detailed study of the relative performance of EM-ML and FBP reconstructions provided in J. Llacer et al. (ibid., vol. 12, p. 215-31, 1993). However, there remains considerable confusion in the field regarding appropriate stopping rules for EM-ML algorithms, and in this correspondence the author attempts to detail a shortcoming of one of the more recent and innovative stopping rule criteria. In particular, the author discusses the effect of total photon counts on stopping criteria based on cross-validation.
منابع مشابه
Filtered backprojection algorithm can outperform iterative maximum likelihood expectation-maximization algorithm
The iterative maximum-likelihood expectation-maximization (ML-EM) algorithm is an excellent algorithm for image reconstruction and usually provides better images than the filtered backprojection (FBP) algorithm. However, a windowed FBP algorithm can outperform the ML-EM in certain occasions, when the least-squared difference from the true image, that is, the least-squared error (LSE), is used a...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملSimultaneous maximum a posteriori longitudinal PET image reconstruction.
Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by r...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملThe Thin Plate as a Regularizer in Bayesian SPECT Reconstruction
Bayesian MAP (maximum a posteriori) methods for SPECT reconstruction can both stabilize reconstructions and lead to better bias and variance relative to ML methods. In previous work [1], a nonquadratic prior (the weak plate) that imposed piecewise smoothness on the first derivative of the solution led to much improved bias/variance behavior relative to results obtained using a more conventional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on medical imaging
دوره 13 3 شماره
صفحات -
تاریخ انتشار 1994